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Objectives: Novel antimicrobials for treatment of gonorrhoea are imperative. The first-in-class spiropyrimidi-
netrione zoliflodacin is promising and currently in an international Phase 3 randomized controlled clinical
trial (RCT) for treatment of uncomplicated gonorrhoea. We evaluated the in vitro activity of and the
genetic conservation of the target (GyrB) and other potential zoliflodacin resistance determinants among
1209 consecutive clinical Neisseria gonorrhoeae isolates obtained from 25 EU/European Economic Area
(EEA) countries in 2018 and compared the activity of zoliflodacin with that of therapeutic antimicrobials
currently used.

Methods: MICs of zoliflodacin, ceftriaxone, cefixime, azithromycin and ciprofloxacin were determined using an
agar dilution technique for zoliflodacin or using MIC gradient strip tests or an agar dilution technique for the other
antimicrobials. Genome sequences were available for 96.1% of isolates.

Results: Zoliflodacin modal MIC, MIC50, MIC90 and MIC range were 0.125, 0.125, 0.125 and �0.004–0.5 mg/L,
respectively. The resistance was 49.9%, 6.7%, 1.6% and 0.2% to ciprofloxacin, azithromycin, cefixime and cef-
triaxone, respectively. Zoliflodacin did not show any cross-resistance to other tested antimicrobials. GyrB was
highly conserved and no zoliflodacin gyrB resistance mutations were found. No fluoroquinolone target GyrA or
ParC resistance mutations or mutations causing overexpression of the MtrCDE efflux pump substantially affected
the MICs of zoliflodacin.

Conclusions: The in vitro susceptibility to zoliflodacin was high and the zoliflodacin target GyrB was conserved
among EU/EEA gonococcal isolates in 2018. This study supports further clinical development of zoliflodacin.
However, additional zoliflodacin data regarding particularly the treatment of pharyngeal gonorrhoea, pharma-
cokinetics/pharmacodynamics and resistance selection, including suppression, would be valuable.

Introduction

Gonorrhoea is a major health concern internationally, particu-
larly due to the high infection prevalence and increasing
resistance of Neisseria gonorrhoeae to all therapeutic antimi-
crobials. If gonorrhoea is not detected and cured, it can result

in serious complications and sequelae, such as infertility and
ectopic pregnancy.1–5

Antimicrobial resistance (AMR) in N. gonorrhoeae has evolved
to all earlier empirical first-line or second-line treatments,
i.e. sulphonamides, penicillins, tetracyclines, fluoroquinolones,
early-generation macrolides and cephalosporins.6 In many
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countries, dual therapy with ceftriaxone intramuscularly plus
azithromycin orally is currently the recommended empirical
first-line treatment of uncomplicated gonorrhoea.4,5,7–10

However, during the latest decade, in vitro and clinical resist-
ance to ceftriaxone and particularly azithromycin has started
to spread.2,4–6,11–14 Furthermore, the first failure to cure gonor-
rhoea with ceftriaxone and azithromycin dual therapy was
reported in 201615 and in 2018 the first gonococcal strain with
ceftriaxone resistance combined with high-level azithromycin
resistance was identified in both England and Australia.16,17

Improved global surveillance of the spread and evolution of
AMR, enhanced understanding of the pharmacokinetics and
pharmacodynamics and optimizations of current treatments and
resistance/susceptibility-guided treatment using molecular assays
are crucial.12,18 However, for future management and control
of gonorrhoea, novel therapeutic antimicrobials and ideally a
gonococcal vaccine are essential, which have also been strongly
emphasized by WHO, ECDC and CDC.12–14,19 Only two new antimi-
crobials, zoliflodacin20–30 and gepotidacin,31–33 are currently in
the later stages of clinical development for treatment of uncom-
plicated gonorrhoea.

Zoliflodacin is the first-in-class spiropyrimidinetrione. It is an
orally bioavailable topoisomerase II inhibitor, but with the novel
target GyrB and a new bactericidal mechanism of action compared
with previous topoisomerase II inhibitors, such as fluoroquino-
lones.20,30 According to early studies, N. gonorrhoeae appears to
have a high in vitro susceptibility to zoliflodacin.21,24–27 No clinical
gonococcal isolates with zoliflodacin resistance have yet been
identified; however, resistant first-step mutants, with GyrB D429A/
N or K450N/T mutations generally resulting in zoliflodacin MICs of
1–2 mg/L, have been selected in vitro.22,28,29 In a Phase 2 random-
ized controlled clinical trial (RCT), a single 3 g dose of zoliflodacin
resulted in 100% microbiological cure of uncomplicated
urogenital (47/47) and rectal (6/6) gonorrhoea and the cure
rate for pharyngeal gonorrhoea was 78% (7/9). Zoliflodacin
was well tolerated, with mostly limited transient gastrointes-
tinal side effects.23 In partnership with the Global
Antibiotic Research and Development Partnership (GARDP), an
international Phase 3 RCT to evaluate the efficacy and safety of
zoliflodacin for treatment of uncomplicated gonorrhoea was
initiated in 2019. However, for future licensing of zoliflodacin
for treatment of gonorrhoea, more recent and comprehensive
in vitro zoliflodacin susceptibility data for contemporary
N. gonorrhoeae isolates internationally are also required.

We evaluated the in vitro activity of the first-in-class
spiropyrimidinetrione zoliflodacin and the genetic conservation
of the target (GyrB) and other potential AMR determinants in
N. gonorrhoeae isolates (n = 1209) collected mainly during
September–November 2018 from 25 EU/European Economic Area
(EEA) countries and compared the activity of zoliflodacin with that
of antimicrobials that are currently recommended and used for
treatment of gonorrhoea internationally.

Materials and methods

Gonorrhoea patients and N. gonorrhoeae isolates

Clinical N. gonorrhoeae isolates (n = 1209; one per gonorrhoea case) from
25 EU/EEA countries, mainly cultured during September–November 2018,

in the European Gonococcal Antimicrobial Surveillance Programme
(Euro-GASP)34,35 were examined. The isolates were cultured in the following
countries (where available, the first �50 consecutive Euro-GASP 2018
isolates in each country): Austria (n = 50), Belgium (n = 50), Croatia (n = 9),
Cyprus (n = 4), the Czech Republic (n = 50), Denmark (n = 49), Estonia (n = 6),
Finland (n = 44), France (n = 58), Germany (n = 100), Greece (n = 50),
Hungary (n = 50), Iceland (n = 34), Italy (n = 50), Latvia (n = 5), Malta (n = 7),
the Netherlands (n = 94), Norway (n = 49), Poland (n = 50), Portugal (n = 50),
Slovakia (n = 50), Slovenia (n = 50), Spain (n = 100), Sweden (n = 50) and the
UK (n = 100). The isolates were obtained from mainly consecutive males
(n = 1025), females (n = 173) and 11 patients not reporting gender. The me-
dian age of the males was 31 years (mean = 33 years; range = 16–86 years)
and the median age of the females was 25 years (mean = 28 years;
range = 1–65 years). For 24 isolates, the ages of the corresponding patients
were not reported. The isolates were cultured from the following sites:
urogenital (n = 875), anorectal (n = 152), pharyngeal (n = 77) and other
(n = 31); the site of infection was not reported for 74 isolates. All included N.
gonorrhoeae isolates were cultured and stored as part of the routine diag-
nostics (standard care) in the different countries and no patient identifica-
tion information was available in the present study. Accordingly, no ethical
approval was required.

N. gonorrhoeae culture and antimicrobial susceptibility
testing
All isolates, previously species verified in Euro-GASP, were cultured from
frozen stocks (#70�C) on GCAGP agar medium [3.6% Difco GC Medium Base
agar (BD Diagnostics, Sparks, MD, USA) supplemented with 1% haemoglo-
bin (BD Diagnostics), 1% IsoVitalex (BD Diagnostics) and 10% horse serum]
for 20–24 h in a humid CO2-enriched atmosphere at 36 ± 1�C. If there were
any dubious colony morphology or MIC results, isolates were species re-
verified as N. gonorrhoeae using MALDI-TOF MS (Bruker Daltonics, Bremen,
Germany).

The MIC (mg/L) of zoliflodacin (Entasis Therapeutics, Waltham, MA,
USA) for each isolate was determined by an agar dilution technique,
according to CLSI guidelines (M07-A9 and M100-S24; www.clsi.org) on
GCVIT agar plates [3.6% Difco GC Medium Base agar (BD Diagnostics) sup-
plemented with 1% IsoVitalex (BD Diagnostics)]. The examined zoliflodacin
concentrations ranged from 0.004 to 2 mg/L and two plates without any
zoliflodacin were included for quality control. WHO reference strains A, F
and P,36,37 which have been used in several previous zoliflodacin
studies,21,26–29 were used for quality control of each testing batch. When
reading the results, oxidase testing was used to resolve uncertainty regard-
ing growth. Antimicrobial susceptibility testing of ceftriaxone, cefixime,
azithromycin and ciprofloxacin was performed in Euro-GASP using MIC gra-
dient strip tests or an agar dilution technique, as previously described.34,35

Clinical breakpoints from EUCAST (http://www.eucast.org/clinical_break
points/) were applied for ceftriaxone (susceptible �0.125, resistant
>0.125 mg/L), cefixime (susceptible �0.125, resistant >0.125 mg/L) and
ciprofloxacin (susceptible �0.03, resistant >0.06 mg/L). For azithromycin,
no clinical breakpoints are stated by EUCAST, so the epidemiological cut-off
of azithromycin (MIC >1 mg/L) was used to distinguish isolates with azithro-
mycin resistance determinants (considered as resistant below).

Determination of zoliflodacin resistance determinants
Whole-genome sequences were available for nearly all isolates (n = 1162,
96.1%) through Euro-GASP, sequenced mainly as previously described,35

and full details will be presented elsewhere. In the present study, the
zoliflodacin resistance-determining region of the target GyrB,20–22,28–30

MtrRCDE efflux pump resistance mutations and fluoroquinolone target
GyrA (S91 and D95) and ParC (D86, S87, S88 and E91) resistance determi-
nants6,11,35 were determined using Pathogenwatch (https://pathogen.
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watch/). Potential novel resistance mutations in the gyrB gene were
screened for using ARIBA v2.14.4.38

Results

Susceptibility to zoliflodacin and other examined
antimicrobials

The results of the zoliflodacin susceptibility testing of the 1209
consecutive clinical N. gonorrhoeae isolates obtained from 25
EU/EEA countries in 2018 are summarized in Table 1.

Briefly, the MICs of zoliflodacin for all isolates ranged from
�0.004 mg/L (2.6% of isolates) to 0.5 mg/L (0.17%, two isolates
from Norway). The modal MIC, MIC50 and MIC90 were all 0.125
mg/L. The MIC50 was 0.032 mg/L in 1 (4%) country, 0.064 mg/L in
10 (40%) countries and 0.125 mg/L in 14 (56%) countries. The
MIC90 was 0.125 mg/L in 17 (68%) countries and 0.25 mg/L in 8
(32%) countries (Table 1). No obvious differences between zoliflo-
dacin MIC values were observed for isolates obtained from females
compared with males or for those from patients of different ages
or for those from different anatomical sites of infection (data not
shown).

In Figure 1, the zoliflodacin MIC distribution for EU/EEA isolates
from 2018 (n = 1209) is compared with the zoliflodacin MIC
distribution for EU/EEA isolates from 2012–14 (n = 873).26

Briefly, the zoliflodacin MIC distributions for EU/EEA gonococcal
isolates from 2018 and 2012–1426 appeared to both mainly repre-
sent a zoliflodacin WT MIC distribution and the two distributions
were nearly identical (Figure 1).

In Table 2, the susceptibility categories for ciprofloxacin, azith-
romycin, cefixime and ceftriaxone for the 1209 EU/EEA gonococcal
isolates are shown.

Briefly, the total resistance levels to the conventional
gonorrhoea therapeutic antimicrobials ciprofloxacin, azithromycin,
cefixime and ceftriaxone were 49.9%, 6.7%, 1.6% and 0.2%, re-
spectively. For the previously recommended fluoroquinolone cipro-
floxacin, the resistance levels ranged from 32.0% (in Portugal) to
88.9% (in Croatia, n = 9). Azithromycin resistance ranged from 0%
(in six countries) to 66.7% (in Croatia). Cefixime resistance was
identified in 8 (32%) of the countries and ranged from 0% (in 17
countries) to 25% (in Croatia). Finally, only two (0.2%) ceftriaxone-
resistant isolates were identified (one in Germany and one in
Spain) (Table 2).

Table 1. Susceptibility to zoliflodacin of clinical consecutive N. gonorrhoeae isolates (n = 1209), mainly obtained during September–November 2018
from 25 EU/EEA countries

Country (number of isolates) Modal MICa,b MIC50
c MIC90

d MIC range

Austria (50) 0.064/0.125 0.064 0.125 0.032–0.25

Belgium (50) 0.125 0.125 0.125 0.016–0.25

Croatia (9) 0.125 0.125 0.25 0.064–0.25

Cyprus (4) 0.125 0.032 0.125 0.032–0.125

Czech Republic (50) 0.125 0.125 0.125 �0.004–0.25

Denmark (49) 0.064 0.064 0.125 �0.004–0.125

Estonia (6) 0.125 0.125 0.125 0.032–0.125

Finland (44) 0.125 0.125 0.25 �0.004–0.25

France (58) 0.125 0.125 0.125 �0.004–0.25

Germany (100) 0.064 0.064 0.125 0.008–0.25

Greece (50) 0.125 0.125 0.125 0.032–0.25

Hungary (50) 0.064 0.064 0.125 �0.004–0.25

Iceland (34) 0.125 0.125 0.25 0.064–0.25

Italy (50) 0.064 0.064 0.125 0.032–0.25

Latvia (5) 0.064 0.064 0.125 0.008–0.125

Malta (7) 0.064/0.125 0.125 0.25 0.064–0.25

Netherlands (94) 0.064 0.064 0.125 �0.004–0.25

Norway (49) 0.125 0.125 0.25 �0.004–0.5

Poland (50) 0.125 0.125 0.125 0.008–0.125

Portugal (50) 0.125 0.064 0.125 �0.004–0.125

Slovakia (50) 0.064 0.064 0.125 0.016–0.25

Slovenia (50) 0.125 0.125 0.25 �0.004–0.25

Spain (100) 0.064 0.064 0.125 �0004–0.25

Sweden (50) 0.125 0.125 0.25 0.008–0.25

UK (100) 0.125 0.125 0.25 0.008–0.25

All isolates (1209) 0.125 0.125 0.125 �0.004–0.5

aMIC (mg/L) determined using an agar dilution technique (www.clsi.org).
bModal MIC, the most frequently occurring MIC value.
cMIC50, MIC where 50% of the isolates are inhibited.
dMIC90, MIC where 90% of the isolates are inhibited.
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No MIC correlations were identified between zoliflodacin and
the other topoisomerase II inhibitor ciprofloxacin (Spearman’s
rank correlation coefficient =#0.14) or the other tested
antimicrobials.

Zoliflodacin resistance determinants

No non-synonymous or synonymous mutations in the GyrB D429,
K450 and S467N amino acid codons, i.e. where zoliflodacin first- or
second-step resistance mutations have been previously selected
in vitro,22,28,29 were found in the 1162 whole-genome sequenced
isolates. Only two non-synonymous substitutions resulting in the
amino acid alterations V470L (one isolate from Spain; zoliflodacin
MIC of 0.064 mg/L) and M521I (one isolate from Austria; zolifloda-
cin MIC of 0.125 mg/L) were found in the examined 480 bp
resistance-determining region of gyrB that encodes the region of
GyrB that surrounds the amino acid residues shown to confer re-
sistance to zoliflodacin.21,22 The two Norwegian isolates with the
highest MIC (0.5 mg/L) were clonally related, were also susceptible
to ciprofloxacin (MIC = 0.016 mg/L) and had no fluoroquinolone re-
sistance mutations in GyrA or ParC. Both of these isolates had a
mosaic mtrR promoter and a mosaic mtrD (but no 23S rRNA azith-
romycin resistance mutations), which probably caused the resist-
ance to azithromycin (MICs of 2 and 4 mg/L, respectively).
However, a total of 112 isolates in the dataset had a mosaic mtrR
promoter, which also included a mosaic mtrD in at least 108 of
them. Genetically, the mosaics presented by the two strains with a
zoliflodacin MIC of 0.5 mg/L were identical to each other, but also
to that of other isolates in the dataset, so we cannot confirm the
contribution of this mosaicism alone to the increased zoliflodacin
MIC for these two strains. In general, no fluoroquinolone target
GyrA or ParC resistance mutations or mutations resulting in overex-
pression of the MtrCDE efflux pump appeared to substantially and/
or consistently affect the MICs of zoliflodacin. Notably, WT isolates

with regard to GyrA, ParC and MtrCDE AMR mutations had MICs
from 0.004 to 0.25 mg/L (Figure 2).

Discussion

In this study, the novel and first-in-class spiropyrimidinetrione
zoliflodacin showed high in vitro activity against contemporary
N. gonorrhoeae isolates (n = 1209) from 25 EU/EEA countries.
This study, in combination with previous studies, confirms that
N. gonorrhoeae has a high in vitro susceptibility to zoliflodacin with
no cross-resistance to previously used gonorrhoea therapeutic
antimicrobials.21,24–27

The highest zoliflodacin MIC of 0.5 mg/L (confirmed in repeated
testing) was recorded in two clonally related isolates (0.17% of all
isolates) from Norway. In previous mostly small zoliflodacin stud-
ies, the highest zoliflodacin MIC for any clinical isolate has been
0.25 mg/L.21,24–27 Accordingly, 0.5 mg/L is the highest zoliflodacin
MIC reported for N. gonorrhoeae,21,22,24–27 but no zoliflodacin tar-
get resistance mutations in GyrB or fluoroquinolone target resist-
ance mutations in GyrA or ParC were found in these two isolates.
Both isolates had genetically identical mosaics spanning mtrR and
mtrD, which caused azithromycin resistance, but were also found
with 100% identity in other isolates, ruling out that these mosaics
alone caused the slightly higher zoliflodacin MIC. These isolates
may represent the highest MIC in the zoliflodacin WT MIC distribu-
tion or they may contain some unknown determinant that slightly
increases the zoliflodacin MICs.

No mutations in the GyrB D429 or K450 amino acid codons,
where first-step zoliflodacin resistance mutations have been
selected in vitro,22,28,29 or other GyrB mutations associated with
increased zoliflodacin MICs were found among clinical gonococcal
isolates from 25 EU/EEA countries. In addition, no fluoroquinolone
target GyrA or ParC resistance mutations appeared to affect the
MICs of zoliflodacin. It has been previously shown that also general

Figure 1. Zoliflodacin MIC distribution for isolates from EU/EEA countries in 2018 (n = 1209; black bars) compared with the MIC distribution for EU/EEA
isolates from 2012–14 (n = 873; grey bars).26
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AMR determinants, such as overexpression of efflux pumps, par-
ticularly MtrCDE,28 can result in increased MICs of zoliflodacin28

and other antimicrobials;39 however, these MIC changes are prob-
ably relatively minor in the absence of zoliflodacin GyrB target re-
sistance mutation. Nevertheless, further studies regarding
different types of mosaics in MtrRCDE and their effects on the MICs
of zoliflodacin and other antimicrobials are warranted. AMR is un-
usual before an antimicrobial is clinically used when cross-
resistance to the antimicrobials currently used is lacking, i.e. as for
zoliflodacin.21,25–27 When zoliflodacin starts to be used clinically,
potential emergence of resistance should be monitored phenotyp-
ically and ideally also genetically. Nevertheless, the frequency of
in vitro selected zoliflodacin resistance mutations has been shown
to be low when evaluated as a single antimicrobial and further
reduced when using antimicrobial combinations.29

Conclusions

The in vitro susceptibility to the first-in-class spiropyrimidinetrione
zoliflodacin was high in contemporary, clinical isolates (n = 1209)
collected from 25 EU/EEA countries and no cross-resistance with
any of the tested conventional gonorrhoea therapeutic

antimicrobials was found. An international Phase 3 RCT to evaluate
the efficacy and safety of zoliflodacin for treatment of uncompli-
cated gonorrhoea has been ongoing since 2019. This work is per-
formed in parallel with gonorrhoea antimicrobial stewardship
initiatives by GARDP, WHO and the Foundation for Innovative New
Diagnostics (FIND), including, for example, surveillance of AMR2,3

and antimicrobial consumption, enhanced aetiological diagnos-
tics,40 improved AMR mutation surveillance35,41 and rapid
point-of-care tests for detection of N. gonorrhoeae and ideally also
antimicrobial resistance/susceptibility to inform individualized
treatment of gonorrhoea.42–44 Nevertheless, it is crucial to further
study also zoliflodacin pharmacokinetics/pharmacodynamics,
including ideal dosing regimen, and resistance selection, including
its mechanisms, fitness and suppression. To address these ques-
tions, zoliflodacin is currently being evaluated in an N. gonorrhoeae
hollow fibre infection model for zoliflodacin.29,45

Acknowledgements
We want to thank Entasis Therapeutics, particularly John Mueller, for
providing zoliflodacin. We are also very grateful to ECDC, particularly

Table 2. Susceptibility to ciprofloxacin, azithromycin, cefixime and ceftriaxone of 1209 consecutive clinical N. gonorrhoeae isolates obtained from 25
EU/EEA countries in 2018

Country (number of isolates) Ciprofloxacin S/I/R (%)a Azithromycin R (%)a Cefixime R (%)a Ceftriaxone R (%)a

Austria (50) 66.0/0/34.0 0 0 0

Belgium (50) 54.0/0/46.0 6.0 6.0 0

Croatia (9) 11.1/0/88.9 66.7 0 0

Cyprus (4) 25.0/0/75.0 25.0 25.0 0

Czech Republic (50) 38.0/0/62.0 18.0 0 0

Denmark (49) 59.2/0/40.8 0 0 0

Estonia (6) 66.7/0/33.3 0 0 0

Finland (44) 45.5/0/54.5 9.1 0 0

France (58) 38.0/1.7/60.3 3.4 0 0

Germany (100) 34.0/1.0/65.0 8.0 1.0 1.0

Greece (50) 44.0/0/56.0 0 6.0 0

Hungary (50) 64.0/0/36.0 0 0 0

Iceland (34) 52.9/0/47.1 17.6 0 0

Italy (50) 48.0/0/52.0 8.0 2.0 0

Latvia (5) 40.0/0/60.0 0 0 0

Malta (7) 42.9/0/57.1 28.6 0 0

Netherlands (94) 62.8/0/37.2 6.4 0 0

Norway (49) 34.7/0/65.3 18.4 0 0

Poland (50) 48.0/0/52.0 2.0 0 0

Portugal (50) 68.0/0/32.0 8.0 2.0 0

Slovakia (50) 60.0/0/40.0 2.0 0 0

Slovenia (50) 48.0/0/52.0 2.0 0 0

Spain (100) 45.0/0/55.0 10.0 8.0 1.0

Sweden (50) 44.0/0/56.0 2.0 0 0

UK (100) 58.0b/42.0 7.0 1.0 0

All isolates (1209) 50.1b/49.9 6.7 1.6 0.2

aS, susceptibility; I, susceptibility, increased exposure (only available for ciprofloxacin); R, resistance. According to EUCAST (http://www.eucast.org).
bAgar dilution breakpoint technique only distinguishing resistant (R) (MIC >0.06 mg/L) and susceptible, increased exposure (I) plus susceptible (S) (MIC
�0.06 mg/L) isolates (used in the UK).

High zoliflodacin susceptibility of N. gonorrhoeae JAC

1225

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/76/5/1221/6132079 by C

arleton U
niversity Library user on 05 June 2021

http://www.eucast.org


Gianfranco Spiteri, for funding and coordinating Euro-GASP,13,34,35 which
makes this type of independent study possible to perform.

Members of the European Collaborative Group
Raquel Abad Torreblanca, Lena Rós Ásmundsdóttir, Eszter Balla, Irith De
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